
ABSTRACT. Knowledge-based sys-

tems (KBS) development and main-

tenance both require time-consum-

ing analysis of domain knowledge.

Where example cases exist, KBS can

be built, and later updated, by incor-

porating learning capabilities into

their architecture. This applies to

both supervised and unsupervised

learning scenarios. In this paper, the

important issues for learning sys-

tems—memory, feedback, pattern

formulation, and pattern recogni-

tion—are described in terms of an

instance vector set, a prototype vec-

tor set, and a mapping between those

sets. While learning systems can pos-

sess robustness, recency, adaptabil-

ity, and extensibility, they also re-

quire: careful attention to example

case security, correct interpretation of

feedback, modification for uncer-

tainty calculations, and treatment of

ambiguous output. Despite the diffi-

culties associated with adding learn-

ing to KBS, it is essential for rid-

ding them of artificiality.

Adding Learning to
Knowledge-Based Systems:
Taking the "Artificial" Out of Al

Daniel L. Schmoldt
USDA Forest Service
Brooks Forest Products Center
Blacksburg, Virginia 24061-0503
schmoldt@vt.edu

Knowledge-based systems (KBS), as the hegemonic version of
AI, have gained substantial notoriety, both as topics for research
and as application tools for managers and decision-makers. The
number of system development projects were few in number
during the early 1980’s; there were less than 50 in business and
industry before 1985 (Harmon and Sawyer 1990) By 1992 their
number grew to more than 200 in the areas of agriculture and
the environment alone (Durkin 1993). Carrascal and Pau (1992)
reviewed 110 applications in agriculture and food processing.
Many systems are still of the stand-alone variety, but an ever
larger number imbed knowledge-based methods and knowledge
bases in other applications, e.g., spatial data systems (q.v., Loh
et al. 1994, Power and Saarenmaa 1995, Reynolds et al. 1996).
As with any marriage of different techniques, the expectation is
that a merger can borrow from the best of both approaches to
create something even more useful.

While KBS and methods have demonstrated usefulness, the
presence of any real intelligence in any of these systems is ques-
tionable; these systems lack one of the seminal characteristics
of intelligence—an ability to learn (Schank 1987). Being ca-
pable of learning—behavioral modification over time—results

Vol. 11, No. 3, 1997 1

Schmoldt: Adding Learning to Knowledge-Based Systems

2 AI Applications

in agents that are adaptable to new inputs and that
are robust with respect to erroneous inputs. Like-
wise, learning is also central to the operation of the
scientific process (McRoberts et al. 1991).

Typically, however, rigidity and fragility are
characteristics of most current KBS. The current
generation of systems can only deal with problem
instances that are expressly encoded for in their
knowledge bases and often fail catastrophically
when unusual problems are encountered (Schmoldt
and Rauscher 1996). As our best example of learn-
ing agents, human beings exhibit a great deal of
flexibility in dealing with the vagaries posed by life’s
experiences. So, as the first decade of AI applica-
tions in natural resource management draws to a
close, we need to critically examine whether newly
developed KBS should be evolving toward a more
anthropomorphic level of intelligence.

Certainly, some efforts have been made to de-
velop learning systems (e.g. BACON and
GLAUBER, Langley et al. 1987; RIFFLE, Matthews
et al. 1995), but these systems were designed ex-
pressly for learning or discovery. I am arguing, in-
stead, that traditional, application-oriented KBS
should also contain some learning capability, what
Julien et al. (1992) referred to as on-site learning
or apprentice systems. Those authors described how
this might be accomplished for environmental
evaluation applications. Regardless of how easy it
is to revisit a knowledge base periodically and bring
it up to date (and the ease of this task is question-
able), a self-learning system, once created, would
require little manual attention to upgrade system
knowledge and would possess robustness, elegance,
and economy. A self-learning knowledge base would
be less like a data based that required human guard-
ianship and would be more like an apprentice or
assistant.

The intent here is not to cover the many differ-
ent types of machine learning methods available;
those are covered admirably by others (e.g., Julien
et al. 1992, McQueen et al. 1995, Stockwell et al.
1990). Rather, in the remainder of this paper I ex-
amine memory, feedback, pattern formulation, and
pattern recognition as the 4 important learning
components that must be addressed in order to make
learning part of KBS. First, however, I briefly
review several ideas related to learning and intro-
duce a generic nomenclature that applies to all au-
tomated learning systems.

Learning In General

Supervised and Unsupervised
In general, there are two types of learning—su-

pervised and unsupervised. They differ by the pres-
ence/absence of an explicit target response for each
learning instance. Nevertheless, it should be appar-
ent from the following sections that, despite this
difference, we can still view supervised and unsu-
pervised learning as variants of the same process.

In supervised learning, an input signal is paired
with a target response. An intelligent agent forms
an associate between these 2 components of each
training pair. The target response provides a feed-
back mechanism that steers the agent away from
incorrect behavior and toward correct behavior.
Learning becomes difficult when: (1) there is no
clear, unambiguous, and 1-1 pairing of inputs and
responses due to incomplete or noisy data, (2) the
space of all possible inputs is large, or (3) the agent
needs to make correct responses to previously un-
seen input signals. All 3 of these conditions are
typical for supervised learning in most real-world
situations. The generic task for an agent that is
learning under supervision is “classification”, where
an input signal indicates one, particular output re-
sponse more than others.

The situation is slightly different for unsuper-
vised learning. Here, a target responses is lacking.
So, the intent becomes to identify similarities and
differences among input signals. As more and more
example input signals are received, their similari-
ties and differences begin to segregate those ex-
amples into groups whose members are more alike
than unlike. Differences are most apparent between
groups and much less so within groups. As with
supervised learning, above, learning is difficult be-
cause: (1) there is no absolute nor obvious way to
group input signals, (2) the space of all possible
input signals is large, and (3) the agent needs to
identify meaning groups without feedback. Un-
supervised learning is often viewed as a clustering
task, with the intent being to “discover” some rela-
tionship between similar signals, in contrast to dis-
similar signal groups. This can also be called “con-
cept formation”; the different groups are labeled
with names to indicate previously unknown con-
cepts.

Schmoldt: Adding Learning to Knowledge-Based Systems

Vol. 11, No. 3, 1997 3

Learning-System Components
Whether supervised or unsupervised, the pro-

cess of learning can be viewed as containing three
primary tasks. First, there needs to be some ability
to store and recall various pieces of information,
i.e. memory—more specifics about these pieces are
given below. This task can be relatively trivial and
is handled quite well by traditional data and infor-
mation management techniques. Nevertheless, there
are some issues surrounding the storage and recall
of example cases which can have a large impact on
system use and performance. These are discussed
more below.

Second, learning requires that an agent be able
to form patterns from examples (or instances) that
it is faced with. This pattern formulation allows the
agent to map specific instances onto prototypical
representations that generalize individual cases.
Generalization greatly compacts knowledge because
each instance does not require treatment as a spe-
cial case.

Third, when presented with an example prob-
lem, the agent needs to recognize what prototype
pattern that example belongs to and react accord-
ingly. The recognized pattern may explicitly code
for a predefined action or for several actions. This
pattern recognition capability can be viewed as
memory recall along with application. Unsupervised
learning contains no explicit action to perform given
an input signal, but there needs to be something
built into the learning process that eventually rec-
ognizes that certain groups are genuinely different
and can be treated as such in a conceptual way. I’ll
get more detailed about pattern formation and
pattern recognition in the following sections, but
first I’ll introduce some nomenclature to be used in
later derivations.

Nomenclature

Instance Vectors
The following nomenclature is introduced to

ensure unambiguous terminology and clarity of
expression as topics are presented. The mathemati-
cal terminology of sets and mappings is used, but
no attempt has been made to be entirely rigorous
here. We can represent any problem instance, or
example case, ei as a value vector ei = (v1, v2, ...,

vn), where each of the vj are values from correspond-
ing parameter sets Vj. These parameters and their
values completely describe a problem instance. The
n-valued vectors ei are taken from the set EE of all
possible such vectors. Not all problems instances,
however, will have known values for all the param-
eters. So, we must augment each of the parameter
sets Vj with “?”. Then, some of the vj for any ei may
take on the special value “?”, for unknown. The set
EE, then, could be described mathematically as { (v1,
v2, ..., vn) | vj∈ Vj∪{?} }.

As a concrete, but trivial, example, let’s assume
that we are identifying farm animals. Parameters
in this case, might include feathers_present,
tail_type, wool_present, number_of_stomachs, and
height. A chicken instance might present a vector,
such as (1, ?, ?, 0, small), where 0 and 1 indicate
present and not_present, respectively. Another
chicken instance might present the following vec-
tor (?, stubby, ?, 0, small). It should be obvious,
then, that the same type of farm animal can have
different representations, depending on the prob-
lem instance. Our farm animal example has small
cardinality so it would be possible to exhaustively
enumerate all possible vector combinations of pa-
rameter values, and thereby completely describe the
elements of EE. In general, however, this may not be
practical, and oftentimes various combinations of
parameter values are illogical; e.g., both feathers
and wool present on an animal would be unrealis-
tic.

Decision Classes
Because the goal is to identify farm animals, we

are dealing with a supervised learning situation.
Alternatively, if we have no knowledge of different
farm animals, we might try to learn the concepts of
different farm animals based on descriptive in-
stances of them (unsupervised learning). In super-
vised learning, we are trying to associate elements
of EE with particular types of farm animals, e.g.
chicken, duck, goose, emu, rabbit, pig, goat, sheep,
cow. Ideally, all pig instances would be associated
with the pig class, duck instances with the duck
class, etc. Let’s refer to the class of farm animal
types (decisions, in general), just enumerated, as CC.
Because there are many different vector represen-
tations for a duck instance, it may be impractical or
impossible to expressly memorize each such vec-
tor. Therefore, we need to generalize duck instances

Schmoldt: Adding Learning to Knowledge-Based Systems

4 AI Applications

so that we can associate generalized patterns from
a subset of all duck instances to the full set of duck
instances. Generalization does several things: it
greatly economizes the work we need to do to cor-
rectly identify farm animals, it allows us to deal
with instances that we haven’t seen previously, and
we can improve performance as new instances are
introduced.

Prototype Vectors
These generalizing patterns can be represented

as prototype vectors pk = (w1, w2, ..., wn, ci). Each
of the wj, 1 ≤ j ≤ n, is either, a specific value, a
descriptor for a range of values, or “I don’t care”
(*) for the corresponding parameter. This represen-
tation can be translated quite easily into decision
trees or rules; an implicit AND exists between the
parameter/parameter-value pairs. Just as we aug-
mented the parameter sets Vj, above, with the value
“?”, here we augment the original parameter sets
with the special symbol “*” instead. The target re-
sponse ci∈CC is included as part of the prototype
vector in the supervised learning case. We, then, de-
fine the set PP of all prototype vectors as { (w1, w2,
..., wn, ci) | wj ∈ Vj{*}, ci∈CC }. For example, the
prototype vector (1, *, *, *, *, chicken) could be a
generalization for fowl. To correctly represent “fowl”
using this nomenclature, however, we would need
similar prototype vectors, but with “chicken” re-
place with “duck” and with “goose”, etc. So, the in-
put signal would be paired with each of the differ-
ent types of fowl. Then, an input vector descriptive
for “fowl”, in general, would match a prototype vec-
tor for each type in the class “fowl”. In this way, the
class “fowl” would be implicit in the set of proto-
type vectors activated. The prototype vector (1, *,
*, *, small, chicken) also generalizes for fowl, but
without the emu class perhaps (depending on
whether we consider emu a fowl). For unsupervised
learning, the pk’s would not contain target responses,
so PPu (unsupervised) would be { (w1, w2, ..., wn) | wj

∈ Vj{*} }

Mapping Function
Because we need to create the pk from the ei, we

develop, as part of the learning process, a function

f that generates the elements of PP from the elements
of EE. The function f, then, maps the ei onto the pk.
Using this nomenclature, the function f could sim-
ply be an element-wise copy (where “*” replaces
“?”). Of course, applying rule induction or decision-
tree construction methods would be much more in-
volved than this, but the idea is the same. From the
above examples of instance vectors and prototype
vectors, it is obvious that a single instance vector
may be mapped by f to multiple prototype vectors.
So, in general, f(ei) = Pk for some i and k, where Pk

⊆ PP, i.e., each ei maps onto a set of prototype vec-
tors. For example, the first chicken vector (1, ?, ?,
0, small) maps onto both of the previous prototype
vectors, in addition to others.

For supervised learning, the mapping f applied
to a particular ei completely determines the out-
comes, or desired actions, for that problem instance.
Because f is not a 1-1 mapping, however, multiple
outputs will be indicated. Outputs that are most fre-
quently associated with a particular input signal will
receive greater weight (multiple prototype vectors
for the same output). In the case of unsupervised
learning, the mapping f determines possible con-
ceptual groups. Prototype vectors that are most simi-
lar or “closer together”—regardless of how one de-
fines proximity—will define unique groups. Be-
cause a single instance vector can map to multiple
prototype vectors and these prototype vectors may
belong to different groups, an instance vector may
associate with several conceptual groups simulta-
neously.

In terms of learning, then, pattern formulation
(generalization) generates the prototype's pk’s. These
prototype vectors are later used in recall/applica-
tion to map encountered problem instances ei’s to
the appropriate classes ck’s for decision-making (su-
pervised) or to previously recognized and distinct
groups (unsupervised).

Adding Learning to KBS

In this section I discuss some of the important
issues that need to be addressed as KBS are aug-
mented with learning capabilities. These issues in-
clude: memory, feedback, pattern formulation, and
pattern recognition.

Schmoldt: Adding Learning to Knowledge-Based Systems

Vol. 11, No. 3, 1997 5

Memory
While providing some memory capability can

be a relatively trivial aspect of a learning system,
there are also important things to consider. First,
the type of data being stored can vary drastically.
In some cases, the data may be numerical statistics
(e.g., Fynn and Fraser 1993) that are easily stored
in a data file. That report presents a unique example
of the above nomenclature in which there is only a
single parameter value in each instance vector and
the prototype vector contains the beta distribution
parameters for the entire data set. More typically,
the data will be parameter values for a large num-
ber of example cases (Meyer and Flanagan 1992),
residing in a data base. In the extreme case, more
elaborate knowledge bases structures, e.g. spatial
relations (Jones and Roydhouse 1994) or frame-like
structures (Chiriatti and Plant 1996), may need to
be stored. Second, some consideration must be given
to the level of data extensibility that users are al-
lowed, i.e., user access to example cases. In some
situations, users may be given full control of data
augmentation and modification, and in other cases,
user access may be very limited (corporate data, for
example). Third (related to the second), there should
be some provision ensuring that previous perfor-
mance levels can be recovered should the data set(s)
become corrupted. If a system is learning from, and
dependent on, example cases, then its performance
can be severely compromised by erroneous data.
Inadvertent, or erroneous, changes to example cases
should be mitigated or, at least, recoverable. It
should be possible to recover to a previous state of
operation.

Feedback
For systems that learn in a supervised mode,

explicit feedback is crucial to the learning process.
Feedback steers the learning process toward mean-
ingful concepts/patterns (prototype vectors) and
away from inappropriate ones. The question, then,
arises as to where feedback comes from. Does the
user provide feedback? Or do the data contain it?
Typically for supervised learning the examples con-
tain explicit feedback in terms of a correct response
from the decision set CC. However, even in this case,
a system will eventually produce an unsatisfactory/
incorrect decision for a new instance vector using

its current store of prototype vectors. For a system
that learns prototype vectors in the form of deci-
sion trees or rules, it may only be necessary to pro-
vide the correct decision and let the system derive a
new tree or new rules to accommodate the new ex-
ample case. In this scenario, the system is able to
take corrective measures autonomously.

If, however, the current problem instance is an
anomaly, then incorporating this new example case
into the knowledge base may create a prototype vec-
tor that is inconsistent with existing vectors or might
create a new set of prototype vectors that are less
effective than the old set. This revised system knowl-
edge may reduce the system’s ability to correctly
respond to previously learned cases. In effect, the
system is learning from a bad example. At that point,
it is then up to the user to inform the system of this
erroneous outcome and perhaps help guide the sys-
tem to correct the faulty logic. This points to the
need for there to be continual monitoring of system
performance over time as new learning occurs.
Monitoring will help ensure that new learning
doesn’t compromise existing knowledge and per-
formance.

In case-based reasoning, two very important
tasks are: matching similar cases (Meyer and
Flanagan 1992) and translating the specifics of a
matched case into comparable conceptual structures
and recommendations within the new case (Chiriatti
and Plant 1996). An incorrect decision in case-based
reasoning may arise from a failure in either of these
tasks. The stored cases are the prototype vectors, in
this exemplar type of learning. Selecting the proper
case (prototype vector) is critical for effective rea-
soning. Feedback comes from the user, as system
recommendations are evaluated for correctness.
Incorrect decisions are traced back to poor match-
ing or to inaccurate translation of case specifics.
This may require modification of system heuristics
or algorithms. A third possibility, of course, is that
the new case does not match with or translate well
from existing cases because it is itself a new exem-
plar. Then it is added to the existing cases, and it
becomes a new prototype vector for a new class of
instance vectors.

The situation for unsupervised learning is very
similar to the case-based reasoning scenario. When
grouping a new example, user feedback may indi-
cate a misclassification. This could signal either
ineffective matching heuristics or, possibly, a new
class of examples.

Schmoldt: Adding Learning to Knowledge-Based Systems

6 AI Applications

Pattern Formulation
Two closely related problems encountered in

forming patterns from data are overgeneralization
and overspecialization. In the former, patterns (pro-
totype vectors) contain too many “*” (“I don’t care”)
characters. The vector (1, *, *, *, *, chicken), from
above, is an example of this. Overgeneralization
produces patterns that are activated in too many
situations, e.g., if we see an animal with feathers,
then we always assume that it is a chicken. Sys-
tems that are overly general have the advantage that
they almost always give an answer, but it’s very of-
ten not the right one.

Overspecialization, on the other hand, creates
patterns with very few “*” characters. That is, each
parameter has a specific value, e.g. the prototype
vector (1, stubby, 0, 0, small, chicken). Patterns with
this degree of specificity are only activated by very
detailed examples. Therefore, overspecialized pat-
terns are not useful for a wide variety of examples.
They don’t give an answer for incomplete examples,
but when they do give an answer it’s usually the
correct one.

Julien (1992) provides two approaches for avoid-
ing overgeneralization and overspecialization. Both
rely on external guidance by an expert, one uses
input before patterns are formed and the other uses
feedback to correct formed patterns. Effective learn-
ing cannot occur in a vacuum, but requires some
external support.

Many of the most common pattern formulation
methods can accommodate some data imperfections,
such as incompleteness, irrelevancy, redundancy,
noise, and errors (McQueen et al. 1995). However,
none of these methods include uncertainty in their
resulting patterns. That is, prototype vectors do not
generally contain a value for the pattern’s correct-
ness or reliability. This means that the application
of learned knowledge during pattern recognition
produces results that are absolute, without any in-
dication of likelihood or belief.

Pattern Recognition
Once a set of prototype vectors has been devel-

oped through learning, then new examples (instance
vectors) can be applied to those patterns. When the
training set is extensive, the prototype vector set PP
will produce good results for new instance vectors,
provided that overspecialization has been avoided.

For sparse training sets, results will be either inac-
curate (general patterns only) or inconclusive (no
special pattern available). This is another place
where feedback is important, because incorrect re-
sults during application can support additional
learning.

Any system that deals with incomplete or erro-
neous example data will produce an ambiguous
pattern set. That is, because during learning the
function that maps instance vectors to prototype
vectors is not 1-to-1, each of those patterns may gen-
erate different decision class values. To deal with
this either: (1) the patterns must be modified so that
only one is activated for any instance vector (this
may reduce system robustness by eliminating gen-
eral patterns) or (2) another component of the KBS
must interpret this ambiguity as uncertainty and
report it to the user accordingly. The former is re-
ally a pattern formulation issue, whereas the latter
addressed pattern recognition and interpretation, the
things that traditional KBS do well.

Conclusions and Discussion
The advantages of KBS that can learn are many,

and hopefully obvious, but nonetheless deserving
of mention here. As noted earlier, manual updating
of KBS is not generally an easy task. System logic
can often be complex and dependencies can be con-
fusing. System maintenance and updating tasks can
be greatly simplified when they are performed au-
tomatically by a system that learns from past mis-
takes and from new examples. Although some
manual attention is still required, it can be much
less intensive and much less frequent.

Because learning systems adapt to new cases,
knowledge is updated regularly. This recency of ex-
amples ensures that system knowledge is modified
appropriately to reflect current types of problems
and their solutions. Consequently, as overall strat-
egies change for dealing with certain problems,
application knowledge will keep pace simulta-
neously. Systems become self-evolving and adap-
tive, much like biological and social systems.

I have focused here mostly on system perform-
ance and modification, but obviously initial sys-
tem construction can also proceed more quickly and
easily when elaborate knowledge acquisition ses-
sions can be reduced or eliminated. This can greatly

Schmoldt: Adding Learning to Knowledge-Based Systems

Vol. 11, No. 3, 1997 7

shorten the development time from concept to field
application.

In addition to these advantages, some things
make learning systems problematic, for now. First,
because learning systems rely on a memory of past
cases and use this memory to deal intelligently with
novel situations, storage and access to this reposi-
tory of experience should not be taken lightly. Sec-
ond, a feedback mechanism that helps correct faulty
reasoning—which may include the reasoning of the
user—needs to distinguish between bad reasoning
and bad examples. Third, the most common pat-
tern formulation methods do not produce patterns
with associated uncertainty values. Fourth, except
for the machine learning workbench of McQueen
et al. (1995), no one has yet brought these tools to
the user—and even this workbench does not con-
tain a pattern recognition, i.e. application, compo-
nent, it only does pattern formulation. Fifth, learn-
ing patterns in example cases often leads to am-
biguous patterns, which should be correctly inter-
preted as uncertainty.

One can view the meaning of the term, “artifi-
cial intelligence” in at least two ways. In one view,
“AI” is interpreted as “intelligence artificially de-
rived,” i.e. man-made, yet possessing many of
intelligence’s essential qualities. The second view,
and the one posited here, interprets “AI” as “intel-
ligence (as in knowing certain things) that lacks
essential qualities for true intelligence.” Any sys-
tem defected in this way can only be artificially,
not genuinely, intelligent. While an artificial intel-
ligence can be extremely proficient at one, certain
task, it is basically quite stupid, as well. This is the
“idiot savant” view of AI, and is consistent with the
design, development, and use of AI’s most notable
products, i.e. KBS.

One of the missing essentials, emphasized in
the previous pages, is the capability to learn—to
formulate new patterns, to discover new knowledge,
to become more proficient with experience. KBS
have traditionally been good at pattern recognition
for instances that their knowledge base was designed
for, but are unable to form new patterns or to asso-
ciate new instances with existing patterns. By way
of an aphorism, one might say, “If it don’t learn, it
ain’t AI.” This phrase should come as no great rev-
elation to anyone, but acknowledging it is very dif-
ferent from acting on it. Eventually, it’s time that
we address the real need for learning in KBS, and
begin to design systems that can accommodate it.

 References

Carrascal, M. J., and L. F. Pau. 1992. A survey of expert systems in
agriculture and food processing. AI Applications 6(2): 27-49.

Chiriatti, K. C., and R. E. Plant. 1996. NPK: A prototype case-
based planning system for crop fertilization decision support.
AI Applications 10(2): 33-42.

Durkin, J. 1993. Expert systems catalog of applications. The Uni-
versity of Akron Printing Department, Akron, Ohio.

Fynn, R. P., and J. M. Fraser. 1993. Learning from data: The beta
distribution and probabilities of solar irradiance ranges. AI Ap-
plications 7(4): 45-57.

Harmon, P., and B. Sawyer. 1990. Creating expert systems for busi-
ness and industry. New York: Wiley.

Jones, E. K., and A. Roydhouse. 1994. Intelligent retrieval of his-
torical meteorological data. AI Applications 8(3): 43-54.

Julien, B. 1992. Experience with four probability-based induction
methods. AI Applications 6(2): 51-56.

Julien, B., S. J. Fenves, and M. J. Small. 1992. Knowledge acqui-
sition methods for environmental evaluation. AI Applications
6(1): 1-20.

Langley, P., H. A. Simon, G. L. Bradshaw, and J. M. Zytkow. 1987.
Scientific Discovery. The MIT Press, Cambridge, Massachu-
setts.

Loh, D. K., Y. T. C. Hsieh, Y. K. Choo, and D. R. Holtfrerich.
1994. Integration of a rule-based expert system with GIS
through a relational database management system for natural
resource management. Computers and Electronics in Agricul-
ture 11(2/3): 215-228.

Matthews, G., R. Matthews, and W. Landis. 1995. Nonmetric con-
ceptual clustering in ecology and ecotoxicology. AI Applica-
tions 9(1): 41-48.

McQueen, R. J., S. R. Garner, C. G. Nevill-Manning, and I. H.
Witten. 1995. Applying machine learning to agricultural data.
Computers and Electronics in Agriculture 12(4): 275-295.

McRoberts, R. E., D. L. Schmoldt, and H. M. Rauscher. 1991.
Enhancing the scientific process with artificial intelligence:
forest science applications. AI Applications 5(2): 5-26.

Meyer, C. R., and D. C. Flanagan. 1992. Application of case-based
reasoning concepts to the WEPP soil erosion model. AI Appli-
cations 6(3): 63-71.

Power, J. M., and H. Saarenmaa. 1995. Object-oriented modeling
and GIS integration in a decision support system for the man-
agement of eastern hemlock looper in Newfoundland. Com-
puters and Electronics in Agriculture 12(1): 1-18.

Reynolds, K., P. Cunningham, L. Bednar, M. Saunders, M. Foster,
R. Olson, D. Schmoldt, D. Latham, B. Miller, and J.
Stephenson. 1996. A knowledge-based information manage-
ment system for watershed analysis in the Pacific Northwest
U.S. AI Applications 10(6): 9-22.

Schank, R. C. 1987. What is AI, anyway? AI Magazine 8(4): 57-
66.

Schmoldt, D. L., and H. M. Rauscher. 1996. Building Knowledge-
Based Systems for Natural Resource Management. Chapman
and Hall, New York.

Stockwell, D. R. B., s. M. Davey, J. R. Davis, and I. R. Noble.
1990. Using induction of decision trees to predict greater glider
density. AI Applications 4(4): 33-43.

